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Abstract: This paper considers diagnostic tests of the GARCH and E-GARCH models against each other,
based on a linear weighting of the competing conditional variances, The asymptotic distributions and
power functions of the diagnostic tests are examined. Alternative weighting schemes are also analysed.

1. INTRODUCTION

Various volatitities, such as asset returns, stock
returns and exchange rates, are believed to
change over time. Modelling time-varying
volatility has been one of the most important
research topics in various economic and financial
applications over the last fifieen years. The first
development to capture such volatility was the
autoregressive  conditional  heteroskedasticity
(ARCH) model of Engle [1982]. Following
Engle’s seminal contribution, many different
ARCH-type madels have been proposed; see, for
example, ARMA-ARCH [Weiss, 1984], GARCH
{Bollerslev, 1986], CHARMA [Tsay, 1987], E-
GARCH [Nelson, 1989], Threshold ARCH
{Zakoian, 19941, and double threshold ARCH [Li
and Li, 1996]. among others (for a survey of
recent theoretical results, see 11 et al. [1999]).
Without doubt, two of the more interesting and
widely used models in the ARCH family are
Bollerslev’s GARCH and Nelson's B-GARCH.

The GARCH model has two quite attractive
features. First, it can capture the persistence of
volatility. A substantial body of empirical
evidence has helped to explain various ecanomic
and financial phenomena (see, for example, Engle
and Boliersiev [1986a, b], Bollersiev et al. [1992,
[994], and Bollerslev and Mikkelsen [1996]).
Second, GARCH is mathematically and
computationally straightforward, as compared
with some other ARCH-type models. Many
theoretical results, including the statistical
properties of the model and the large sample
properties of some estimation methods, are
row  available, and these provide a solid
foundation for appiications of the model.

However, as argued by Nelson [1989], the
GARCH model has several drawbacks, including
an inability to capture asymmetric volatility and
to impose nonnegativity restrictions.

In order to avoid these shoricomings, Nelson
119891 proposed the E-GARCH model. The
GARCH and E-GARCH models are non-nested
{or separate) and the volatilities modelled by
these two models should be substantially different
form each other. However, as the true feature of
the volatility is not known in practice, it is also
not known whether the true model is GARCH or
E-GARCH when a series of economic or
financial data are observed. This suggests the
motivation for developing diagnostic tests of the
GARCH and E-GARCH models.

A primary aim of this paper is to develop and
examine the asymptotic properties of diagnostic
tests of the non-nested GARCH and E-GARCH
models. The non-nested testing methodology was
developed almost four decades ago, and has been
demonstrated to be a powerful teol for testing
such models (see McAleer [1993] for a recent
review). However, virtualiy all non-nested tests
have been developed for the functional forms of
the regression, or for the conditional means. This
paper adapts the non-nested procedure for testing
the conditional variances of different models, in
particular, to develop non-nested diagnostic tests
of the GARCH and BE-GARCH models. The
asymptotic distributions and power functions of
the diagnostic tests are derived. Afternative
weighting schemes are also examined.

The paper is organised as follows. Section 2
presents the GARCH and E-GARCH models, and
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the non-nested diagnostic testing procedures.
Section 3 presents the non-nested diagnostic tests
of the GARCH and E-GARCH models, and
examines their asymptotic distributions and
power functions, Section 4 discusses non-nested
tests based on alternative weighting schemes.
Some concliuding remarks are given in Section 5.
The proots of all theorems can be found in Ling
and McAleer [ 1996b].

2. NON-NESTED DIAGNOSTIC TESTING
PROCEDURE

Suppose that {g] is the time series process of
interest. One possible specification for g is the
GARCH(p.g) model, namely:

Hy g =z, (2.1

P 2 ¥
"'I] = a!} + EF_:J(X’E{_" + ﬁ:’hr—f

=1

where o, > 0, o, 2 0 and B, 2 0; {zn,] is a series of
independently and identically distuibuted (i.1.d.)
random variables with mean zero and variance
one, and ¢=1,..,n It is assumed that

ZP a,+z:it,6§<i, which ensures that the

i=1 1
GARCH model is strictly stationary and ergodic,
and Esf < oo (see Bollerslev {1986] and Ling and
Li [1997]).

A popular alternative specification to GARCH is
the E-GARCH({r,s) model, which is defined by:

Hy g =z,¢/ (22)
lng,=w+(1-Y @BV (1+3 wB)ulE.)

where

utey=6e, /g +rlfe /s - Ee |/ o)
=6z, +v{ey |~ B )

and {zy} is a series of ii.d. random variables
with mean zero and wvariance one. It s
assumed that v and @ are act both equal

2::” ,C’,:' <%0, where
(-3 8BV 0+ B)=3" plB. This

is the condition for the strict stationarity,

o ZEY0 and

ergodicity, and covariance stationarity of Ing’
(see Neison [1989]). From (2.1)-(2.2), 1t is clear

that i, and H, are non-nested, in that neither can
be obtained from the other by the imposition of
suitable parametric restrictions.

In a similar spirit to that of Davidson and
MacKinnon [1981], MacKinnon et al. [1983], and
Bera and McAileer [198G], we can construct the
auxiliary ARCH-type model given by the
following lnear weighting of the competing
conditional variances:

Hy g =zf" (2.3)

o ={1-8)h +3g,

where {z;] is a series of Lrd. random variables
with mean zero and variance one. If H, 15 {rue,
then 8 =0, and & = | if H, is true. Now let B, be
the maximuam likelihood estimator (MLE) of
B in (2.2} Denote g,(gn) by g, where
B=(08,.. ... w87, and let A7 denote

the transpose of the vector or matrix A. F,, can be
approximated by the fellowing model:

Ho: €, =2, f)° (2.4)
_;FOr ={l- B)hr +5‘§! .

It can be seen that g, i3 a function of
{€: 1, €. }, and hence i independent of z,
because the influence of any particular error term
on the estimates tends lo zero as the sample size
approaches infinity (this argument is similar to
that in Davidson and MacKinnon [{98i]). In
practice, it is usually assumed that the pre-sample
values, i.e. g for ¢+ £0, are zero. This assumption
does not affect the asymptotic properties of the
estimators or tests (see Bollersiev [1986] and
Weiss [1986]). Under Hy, g 1s strictly stationary
and ergodic, and has a finite unconditional
variance,

Using maximum likelihood estimation, we can
obtain the joint estimators, Sn and 6{” , of & and
o, where o= (0p,0),...,0.3,....B,)". Under Hy,
we can derive the asymptotic distribution of 8”
in order to test Hy.

Under Hy, the estimator of & in (2.4} will
converge to 1. However, as the t-statistic for
testing & = 0 in (2.4) is conditioral on the truth of
Hy, it 1s valid only for testing Ay In order to
derive a test for H,, consider the following
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auxiliary ARCH-type modeh

Hi g =21 (2.5)
Sy =0-8)g, J‘"af;f

where IE, denote A,(G,) and &, is the MLE of

o.. The MLE of 8 in (2.5) can be used to test /, as
the nuil, namely 8 =0,

Unlike the typical linear and nonlinear regression
models considered in the literature, the estimation
of (2.4) or (2.5) is more complicated. Consider
guasi-maximum fikelihood estimation of {2.4).
Under the regularity conditions given in
Bollerslev and Wooldridge {1992, Theorem 2.1}
or White [1994, Theorem 6.2], there exist a series
of consistent MLEs which are asymptotically
normal or satisfy condition (3.2) of the following
section. Unfortunately, the verification of these
regularity conditions can be difficult, even for the
GARCH and E-GARCH models. A weaker
regularity condition is available only for the
GARCH(1,#) model (see Lee and Hansen [1994]
and Lumsdaine [1996]). For the generai
ARCH(p) model, Ling and McAleer {1999aj
showed asymptotic normality under the second
moment condition, while the finite fourth-
moment condition is required for the general
GARCH(p,q) model {see Ling and L: [1997]).
The latter is a strong condition and may not
always be satistied in practical applications. For
the E-GARCH model, no regularity condition has
vet been established. In what follows, it is
assumad that all of the appropriate regularity
conditions are satisfied.

3. ASYMPTOTIC PROPERTIES OF THE
MNON-NESTED TESTS

In this section, we present the asymptotic
distribution of the non-nested test under the null,
Hy GARCH, and the corresponding power
function under the alternative, H,;: E-GARCH.
The problent is symmetric, and the case of testing
the E-GARCH null against the GARCH
alternative is also examined.

Consider the {conditional) gquasi-log-likelihood
function of modet (2.4), i.e. Hy:

2
no &

1= fO:

- l it . j ~
L8, o) z—gzmmg For "2?{2 (3.1)

Suppose that (3,.6) are a series of MLEs of
(8,07, such that:

4 "GL(S, o)
5,-5) rodlm
ﬁ(&maj" e mjw”m (2)
d

where JL(3,ayd6 and JL(B.0)de are the first-
order derivatives of L(8,00) with respect to § and
o, respectively, and B = JLY(8,00/9(8,000(8,¢0) is
the correspending second-order derivative of
Li&,o).

Denote F = (gy.....qa,)", with a = (ah,/acx)/\/ah, ;
e={e,...e), with e =(&/h - l}/ﬁ; and

R=(rp.on), with  r=(3-h)/\28 . It

follows that:

A8, =R M e f|M K] +0,0) (3.3)
where

My=1-F(FFy'F.

Let B* be the limit of ﬁn in probability under Hy
as p goes to infinity, and E is an intermediate
point between f, and B*. It is straightforward to

show that \/;1‘5” is asymptotically normal with
mean zero and an asymptotic variance which may
be estimated by:

nef it R

where cr:(Ezf—é)/Q, and !'V:’c, and R are,
respectively, My and R with all the parameters
replaced by their corresponding estimates. Thus,
we have the following theorem,

2

Theorem 3.1.
The r-statistic for & genarated by (2.4) is

"

asymptotically distributed as N(O,1) if Hy is true.

Denoting o as the limit of & in probability
under M, as n goes to infinity, we have the
theorem.
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Theorem 3.2.
The t-statistic for 5,1 generated by (2.4) is

asymptotically distributed as N(!‘MIORI/J;”,I)

under H,, where M, and R, are defined as M, and
R with B* and o replaced by B and o,
respectively, The  power  function s
asymptotically given by

@(g” +1|M,GR§ /J’E”)m(l)

where P(-} is the cumulative distribution
function of the standardised normal and {, is the
106 percentile of the standardised normal
distribution.

For purposes of testing E-GARCH (that is, 5=}
in (2.5) as the null, the estimation procedure is
similar to the above and hence is omitted. In this
case, the asymptotic distribution of the r-statistic

of 5” is the same as that given for testing
GARCH (thatis, 6 =0)in (2.4).

Remark. From Theorem 3.2, the r-statistic from
(2.4) rejects Hy against H, with probability |
when H; is true. A similar conclusion holds for
the r-statistic from {2.5). In practice, as it is
possible that both Hy and H| are rejected using
the two non-nested diagnostic tests from {2.4) and
(2.5), the appropriate inference would be to
reconsider both meodels. Thus, the non-nested
tests from (2.4) and (2.5) are intended as simple
and wseful diagnostic tools. The results from both
tests should provide some guidance for further
empirical analysis.

4 ALTERNATIVE WEIGHTING

SCHEMES

It is clear that asxiliary ARCH-type models can
be constructed using different weighting
functions. Consider the following two alternative
forms:

H(’IL E = Z:fn!fz 4.1)
f;ir = h:“ﬁéf

and

Hi & =2 ) “42)

Jo ==+ "

In (4.1), the auxiliary ARCH-type model is given
as a linear combination of the logarithms
of the competing conditional variances, i.e.
Inf,=(1-3)nh +8ing,, whereas in (4.2}, it is
given as 2 linear combination of the competing
conditional standard deviations. If H; is true, then
8=0 in each case, and if }, is true, then
correspondingly  &=1. The  asymptotic
distribution of the MLE of & can be obtained in
each case for testing H,,.

First, consider the non-nested diagnostic test of
Hy GARCH (that is, 8 = () based on (4.1}, which
leads to the following theorems.

Theorem 4.1.
The r-statistic for & generated by (4.1) is

n

asymptotically distributed as N(Q,1} if H; 1s true.

Theorem 4.2.
The t-statistic for 5,, generated by (4.1)
is asymptotically distributed as

N(ﬁ{Mlg.Ri/(J;IlM;(}R,fI), I) under H;. The power
function is asymptotically given by:

ac, R ) SR oo

where @(-) and {, are defined as in Theorem 3.2,
R=(F,... Y, 7 =In(8,/h)/2, and R, is R
with o and B* replaced by o* and J,
respectively.

Remark. From Theorem 4.2, the r-statistic based
on (4.1) still has asymptotic power of unity under

Hyif |§;MH,R1'¢O. However, !fé{MmR,l may be

zero, and in this case, the power function of the
t-statistic based on (4.1) will be asymptoticalty
N(0,1). 1t is expected that the r-statistic from (4.1)
will not be robust. Since My, is an orthogonal

‘%E’Mm“'”Mle“ :
Thus, from Theorems 3.2 and 4.2, it follows that

the f-statistic from (2.4) is more powerful than
that from (4.1).

projection matrix, |§;M“,R,! Si

Now consider the alternative weighting scheme
given as HJL in (4.2}, which yields the following
theorems.

Theorem 4.3.
The t-statistic for 5” generated by (4.2} is
asymptotically distributed as N0, 1) if Hy is true.
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Theorem 4.4,

The t-statistic for &

il

generated by (4.2)

is asymptotically distributed as
ymp ¥

N[;?,’Mqu/ch—ijle[]),1] under H,. The

power function is asymptotically given by:

of o, ] [ o B ot

where ®() and {, are defined as in Theorem 3.2,

and ﬁ, is & with o and B replaced by o* and B,

respectively.

Remark. In a similar manner to the weighting
scheme in (4.1}, the power function
of the tstatistic from (4.2) is asymptotically

N(D,1) if R/M, R, =0, and 1 in probability if

ﬁ;MmR, # 0. Thus, it is also not robust as
compared with the linear weighting scheme
given in (2.4). Simitarly, since
RIM R, SHE{M,O”-”I‘/IWREH, the r-statistic from

{2.4) is more powertful than that from (4.2}

Consider the following more general weighting
scheme:

H(,)lz_ HE = erngnﬁ {4.3)
ft = (=S st

Sy

where A 0. It is clear that, when A =1, (4.3}
reduces to (2.4); as A~ oo, {4.3) reduces to (4.1);
and when A =2, (4.3) reduces to (4.2). Thus (4.3}
will be referred to as the power family. If H; is
true, then 8 =0 in the power family, and if Hy is
true, thern correspondingly 8= 1.

Defining M, and ¢ as isn  Section 3,
o
,

and R)\.: (r}\.lt""r}\n} 1 Wlﬂl
vy, = (th’fl mgff}“ )/(JE&,W )), the asymptotic

variance can be estimated by

a

nef |a1,2,

where M” and R 5 are, respectively, My and Ry

with alt the parameters replaced by their
corresponding estimates.

As 1§i1M1,}RIl/(ﬂfﬁ"”M“,RMJ )S Mle/‘*/;” ’

where R 18 By, with o and ¥ replaced by o and
B, respectively, this determines the non-nested
test with maximum power in finile samples when
A=1. The above results are given in the
following theorem.

Theorem 4.5.

{a) The r-statistic for 3” generated by (4.3) 1is
asymptotically distributed as N{0,1) if Hy s
true.

(b} The r-statistic for &, generated by (4.3)

n

is asymptotically distributed as
NCR, M R [ (et R wnder Hy. The

power function is asymptotically given by:

(’I)(;u +[RileoRs]/(\/"«—'"MmRm”})+ o(l)

where () and {, are defined as in Theorem
3.2

{¢) The test from (2.4) (that is, {4.3) with L= 1) is
the optimal non-nested test of Hy: =0 in the
power family with respect to maximum power
under A4 in finite samples.

Remark. Note that |R, M R| may be zero
unless A = 1. In & similar manner to that given in
the Remark for Theorem 4.4, the 7-statistic for c‘i ,
from (4.3) may not be robust unless A=l

Moreover, 1t 15 clear that the (-statistic for 3”
from (4.3) has asymptotic power of unity for all
Az Qif ER;,MH,R!I = (). it should be noted that the

optimal property of the non-nested diagnostic test
in the power family given in Theorem 4.5 relates
to differences in finite samples. The optimal
property of the non-nested diagnostic test of H,
from (2.5) can be obtammed from a similarly
defined power family.

5. CONCLUDING REMARKS

This paper has developed non-nested diagnostic
tests of the GARCH and E-GARCH models
against each other. Tt was shown that the r-
statistic based on a linear weighting of the
competing conditional variances is asymptotically
normal and has asymptotic power of unity. The
corresponding power function was alse derived.
In addition, the non-nested tests based on the
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weighting schemes in a power family were
evaluated. The asymptotic distributions and
power functions of the corresponding r-statistics
were presented. Tt was demonstrated that the
f-statistic based on a linear weighting of the
competing conditional variances is robust and
yields the maximum power in the power family in
finite samples. Thus, the r-statistic based on the
finear weighting scheme is recommended for
practical purposes.
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